Substrate specificity and regioselectivity of fungal AA9 lytic polysaccharide monooxygenases secreted by Podospora anserina

نویسندگان

  • Chloé Bennati-Granier
  • Sona Garajova
  • Charlotte Champion
  • Sacha Grisel
  • Mireille Haon
  • Simeng Zhou
  • Mathieu Fanuel
  • David Ropartz
  • Hélène Rogniaux
  • Isabelle Gimbert
  • Eric Record
  • Jean-Guy Berrin
چکیده

BACKGROUND The understanding of enzymatic polysaccharide degradation has progressed intensely in the past few years with the identification of a new class of fungal-secreted enzymes, the lytic polysaccharide monooxygenases (LPMOs) that enhance cellulose conversion. In the fungal kingdom, saprotrophic fungi display a high number of genes encoding LPMOs from family AA9 but the functional relevance of this redundancy is not fully understood. RESULTS In this study, we investigated a set of AA9 LPMOs identified in the secretomes of the coprophilous ascomycete Podospora anserina, a biomass degrader of recalcitrant substrates. Their activity was assayed on cellulose in synergy with the cellobiose dehydrogenase from the same organism. We showed that the total release of oxidized oligosaccharides from cellulose was higher for PaLPMO9A, PaLPMO9E, and PaLPMO9H that harbored a carbohydrate-binding module from the family CBM1. Investigation of their regioselective mode of action revealed that PaLPMO9A and PaLPMO9H oxidatively cleaved at both C1 and C4 positions while PaLPMO9E released only C1-oxidized products. Rapid cleavage of cellulose was observed using PaLPMO9H that was the most versatile in terms of substrate specificity as it also displayed activity on cello-oligosaccharides and β-(1,4)-linked hemicellulose polysaccharides (e.g., xyloglucan, glucomannan). CONCLUSIONS This study provides insights into the mode of cleavage and substrate specificities of fungal AA9 LPMOs that will facilitate their application for the development of future biorefineries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Podospora anserina lytic polysaccharide monooxygenase PaLPMO9H catalyzes oxidative cleavage of diverse plant cell wall matrix glycans

BACKGROUND The enzymatic conversion of plant biomass has been recently revolutionized by the discovery of lytic polysaccharide monooxygenases (LPMO) that catalyze oxidative cleavage of polysaccharides. These powerful enzymes are secreted by a large number of fungal saprotrophs and are important components of commercial enzyme cocktails used for industrial biomass conversion. Among the 33 AA9 LP...

متن کامل

Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases.

For decades, the enzymatic conversion of cellulose was thought to rely on the synergistic action of hydrolytic enzymes, but recent work has shown that lytic polysaccharide monooxygenases (LPMOs) are important contributors to this process. We describe the structural and functional characterization of two functionally coupled cellulose-active LPMOs belonging to auxiliary activity family 10 (AA10)...

متن کامل

Podospora anserina hemicellulases potentiate the Trichoderma reesei secretome for saccharification of lignocellulosic biomass.

To improve the enzymatic hydrolysis (saccharification) of lignocellulosic biomass by Trichoderma reesei, a set of genes encoding putative polysaccharide-degrading enzymes were selected from the coprophilic fungus Podospora anserina using comparative genomics. Five hemicellulase-encoding genes were successfully cloned and expressed as secreted functional proteins in the yeast Pichia pastoris. Th...

متن کامل

Several Genes Encoding Enzymes with the Same Activity Are Necessary for Aerobic Fungal Degradation of Cellulose in Nature

The cellulose-degrading fungal enzymes are glycoside hydrolases of the GH families and lytic polysaccharide monooxygenases. The entanglement of glycoside hydrolase families and functions makes it difficult to predict the enzymatic activity of glycoside hydrolases based on their sequence. In the present study we further developed the method Peptide Pattern Recognition to an automatic approach no...

متن کامل

Evolution of substrate specificity in bacterial AA10 lytic polysaccharide monooxygenases

BACKGROUND Understanding the diversity of lignocellulose-degrading enzymes in nature will provide insights for the improvement of cellulolytic enzyme cocktails used in the biofuels industry. Two families of enzymes, fungal AA9 and bacterial AA10, have recently been characterized as crystalline cellulose or chitin-cleaving lytic polysaccharide monooxygenases (LPMOs). Here we analyze the sequence...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2015